Exercise 16

(a) Find the differential $d y$ and (b) evaluate $d y$ for the given values of x and $d x$.

$$
y=\cos \pi x, \quad x=\frac{1}{3}, \quad d x=-0.02
$$

Solution

Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(\cos \pi x) \\
& =(-\sin \pi x) \cdot \frac{d}{d x}(\pi x) \\
& =(-\sin \pi x) \cdot(\pi) \\
& =-\pi \sin \pi x
\end{aligned}
$$

Consequently, the differential of $y=\cos \pi x$ is

$$
d y=-\pi \sin \pi x d x
$$

If $x=1 / 3$ and $d x=-0.02$, then

$$
d y=-\pi\left(\sin \frac{\pi}{3}\right)(-0.02)=-\pi\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{50}\right)=\frac{\pi \sqrt{3}}{100} \approx 0.054414
$$

